

### MQV Annual Meeting 2024

# Scientific Posters (Consortia), Day 1, 8th October 2024

### Please note that you have to take care of the printing of your posters yourself!

| Poster<br>Place | MQV<br>Affiliation | Title of the Posters                                                                                                | Presenters                                            |
|-----------------|--------------------|---------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|
| 1               | K1-1               | Perfect State Transfer                                                                                              | Federico Roy                                          |
| 2               | K1-2               | Passivation Efforts using Organic Molecules                                                                         | Harsh Gupta                                           |
| 3               | K1-3               | TWPAs                                                                                                               | Michael Haider                                        |
| 4               | K3-1               | Quantum Computing with Ultracold Strontium Atoms                                                                    | Max Melchner, Lorenzo<br>Festa                        |
| 5               | K3-2               | Iterative assembly of large-scale neutral-atom arrays                                                               | Flavien Gyger                                         |
| 6               | K3-3               | Towards entanglement-enhanced quantum metrology with cold 88Sr atoms                                                | Sofus Laguna Kristensen                               |
| 7               | K4-1               | Pauli path simulations of noisy quantum circuits beyond average case                                                | Guillermo González                                    |
| 8               | K4-2               | Filter algorithm for dynamics at finite temperature                                                                 | Esther Cruz                                           |
| 9               | K4-3               | Time-Optimal Cooling and Entangling                                                                                 | Emmanuel Malvetti                                     |
| 10              | K5-1               | Q-DESSI Update on the MQSS: Munich Quantum Software Stack                                                           | Q-DESSI Team                                          |
| 11              | K5-2               | The Munich Quantum Toolkit (MQT)                                                                                    | Q-DESSI Team                                          |
| 12              | K5-3               | Compiler Development for Neutral-Atom based Quantum Computing                                                       | Q-DESSI Team                                          |
| 13              | K6-1               | Development of TiN/AIN-based superconducting qubit components                                                       | Benedikt Schoof                                       |
| 14              | K6-2               | Technology and Simulations for Quantum Computer Devices                                                             | Simon Mundinar, Michael<br>Jank (Lars Nebrich)        |
| 15              | K6-3               | Status of Electronic Development                                                                                    | Thomas Thönes (Jens<br>Länglacher)                    |
| 16              | K7-1               | Quantum User Study: Understanding the User<br>Needs and Requirements as a User-centric<br>Research Computing Center | Hai Nguyen                                            |
| 17              | K7-2               | Towards understanding potentials of quantum kernels of classical datasets                                           | Alona Sakhnenko                                       |
| 18              | K7-3               | An Oracle Generator for Grover's Algorithm                                                                          | Xiao-Ting Michelle To                                 |
| 19              | K8-1               | Optimal control efforts of K8                                                                                       | Leo Van Damme, Santana<br>Lujan, and Michael Hartmann |
| 20              | K8-2               | Hardware modelling                                                                                                  | Group of Michael Hartmann and Christian Mendl         |



# Scientific Posters (Consortia), Day 2, 9th October 2024

### Please note that you have to take care of the printing of your posters yourself!

| Poster<br>Place | MQV<br>Affiliation | Title of the Posters                                                                                                                          | Presenters                                                        |
|-----------------|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|
| 1               | K1-1               | 17 Qubit Status                                                                                                                               | Max Werninghaus                                                   |
| 2               | K1-2               | SQQC Fab / Scaling                                                                                                                            | Leon Koch                                                         |
| 3               | K1-3               | Subharmonic drives of fluxonium qubits                                                                                                        | Christian Schneider                                               |
| 4               | K3-1               | Alternative qubit platform based on fermionic 171Yb atoms                                                                                     | Yilong Yang                                                       |
| 5               | K3-2               | Fast optical switching in photonic modulator networks                                                                                         | Klara Meyer-Hermann                                               |
| 6               | K4-1               | Discovering Fault-Tolerant Quantum Circuits and Quantum Error Correction Codes via Reinforcement Learning                                     | Jan Olle and Remmy Zen                                            |
| 7               | K4-2               | Variational Neural and Tensor Network Approximation of Thermal States                                                                         | Sirui Lu                                                          |
| 8               | K5-1               | QDMI - Quantum Device Management Interface:<br>Hardware-Software Interface of the Munich<br>Quantum Software Stack (MQSS)                     | Q-DESSI Team                                                      |
| 9               | K5-2               | An FPGA-based Quantum Control System with a Runtime Configurable Signal Generator                                                             | Q-DESSI Team                                                      |
| 10              | K5-3               | Block encoding of matrix product operators                                                                                                    | Group of Christian Mendl                                          |
| 11              | K6-1               | High-density flexlines                                                                                                                        | Hans Adel, Elias Meltzer                                          |
| 12              | K6-2               | Millikelvin Control Electronics Integration                                                                                                   | Christian Carlowitz, Nicole<br>Zocher                             |
| 13              | K6-3               | Tantalum thin films sputtered on silicon and on different seed layers: material characterization and coplanar waveguide resonator performance | Moritz Singer                                                     |
| 14              | K7-1               | Supporting End-Users in Implementing Quantum Computing Applications                                                                           | Group of Robert Wille                                             |
| 15              | K7-2               | The QACI project at Fraunhofer IIS                                                                                                            | Christian Ufrecht, Friedrich<br>Wagner, Theobald Fuchs            |
| 16              | K7-3               | Quantum Multi-agent Reinforcement Learning for Aerospace Communication                                                                        | Theodora-Augustina Dragan                                         |
| 17              | K8-1               | Error-correction I                                                                                                                            | Groups of Markus Müller,<br>Jens Eisert, and Florian<br>Marquardt |
| 18              | K8-2               | Error-correction II                                                                                                                           | Groups of Markus Müller and Michael Hartmann                      |
| 19              | K8-3               | Applications in quantum computing                                                                                                             | Groups of Michael Hartmann and Jens Eisert                        |
| 20              | K8-4               | Verification and benchmarking                                                                                                                 | Group of Jens Eisert                                              |



# Scientific Posters (Lighthouse Projects), Day 3, 10<sup>th</sup> October 2024

### Please note that you have to take care of the printing of your posters yourself!

| Poster<br>Place | MQV<br>Affiliation                                                                                                        | Presenters                 |  |
|-----------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------|--|
| 1               | K6/Scalable Hardware & Systems Engineering (SHARE)                                                                        | Tbd (TUM-WSI)              |  |
| 2               | LTP Quantum Measurement and Control for the Enablement of Quantum Computing and Quantum Sensing (QuMeCo)                  | Santiago Lopez<br>Huidobro |  |
| 3               | LTP Quantum Measurement and Control for the Enablement of Quantum Computing and Quantum Sensing (QuMeCo)                  | Mahmoud Kalash             |  |
| 4               | LTP Free-Electron States as Ultrafast Probes for Qubit Dynamics in Solid-State Platforms                                  | Soufiane El-Kabil          |  |
| 5               | LTP High-Efficiency Stabilizer Codes (HESC)                                                                               | Stefano Tinelli            |  |
| 6               | LTP Al-Assisted Design for Scalable, Efficient and Highly Structured Quantum Circuits for Quantum Chemistry (KID-QC²)     | Abhishek Dubey             |  |
| 7               | LTP Highly Scalable Technology Modules for Quantum Computing, Quantum Communication and Quantum Sensing with SiC (TeQSiC) | Martin Hofmann             |  |
| 8               | LTP Networked Quantum Systems (NeQuS)                                                                                     | Michelle Lienhart          |  |
| 9               | LTP Networked Quantum Systems (NeQuS)                                                                                     | Nadeem Akhlaq              |  |
| 10              | RnD Rabl/LTP NeQuS                                                                                                        | Joan Agusti                |  |
| 11              | RnD Rabl/LTP NeQuS                                                                                                        | Syeda Aliya Batool         |  |
| 12              | RnD Rabl/LTP NeQuS                                                                                                        | Philipp Schulze-Hagen      |  |
| 13              | RnD Stute                                                                                                                 | Lucas Kirchbach            |  |
| 14              | RnD Vogl                                                                                                                  | Tjorben Matthes            |  |
| 15              | LTP Quantenkommunikationsinfrastruktur (QuKomIn)                                                                          | Dominique Elser            |  |
| 16              | K10/Quantum Technology Park & Entrepreneurship (QTPE)                                                                     | Rosaria Cercola            |  |
| 17              | K9/Quantum Science & Technology Education in Bavaria (QST-EB)                                                             | Katja Barthelmi            |  |
| 18              | K1/Superconducting Qubit Quantum Computer (SQQC)                                                                          | Murali Krishna Kurmapu     |  |
| 19              | LTP Quantum Measurement and Control for the Enablement of Quantum Computing and Quantum Sensing (QuMeCo)                  | Prakiran Baidya            |  |
| 20              | K4/Theoretical Quantum Computing (THEQUCO)                                                                                | Kiran Adhikari             |  |